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Abstract

The last few decades have seen an explosion in identification of genes
that cause monogenetic neurological diseases, as well as advances in gene-
targeting therapeutics. Neurological conditions that were once considered
incurable are now increasingly tractable. At the forefront is the motor neu-
ron disease spinal muscular atrophy (SMA), historically the leading inherited
cause of infant mortality. In the last 5 years, three SMA treatments have been
approved by theUS Food andDrug Administration (FDA): intrathecally de-
livered splice-switching antisense oligonucleotide (nusinersen), systemically
delivered AAV9-based gene replacement therapy (onasemnogene abepar-
vovec), and an orally bioavailable, small-molecule, splice-switching drug (ris-
diplam). Despite this remarkable progress, clinical outcomes in patients are
variable. Therapeutic optimization will require improved understanding of
drug pharmacokinetics and target engagement in neurons, potential toxici-
ties, and long-term effects.We review current progress in SMA therapeutics,
clinical trials, shortcomings of current treatments, and implications for the
treatment of other neurogenetic diseases.
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INTRODUCTION

Neurogenetic disorders are diseases affecting the brain, spinal cord, peripheral nerves, and/or
muscles caused by a defect in one or more genes. During the 1980s and 1990s, gene mutations
underlying the more common monogenetic neurological disorders, such as Duchenne muscular
dystrophy (DMD), Huntington’s disease, and Charcot Marie Tooth disease type IA, were identi-
fied (1), but recent advances in sequencing technologies have led to the accelerated discovery of
highly penetrant, single-gene mutations underlying a multitude of rare disorders (2). In aggregate,
these diseases are surprisingly common, though not frequently encountered in a primary care set-
ting (2, 3). An epidemiological study in northern England found that ∼1 in 1,100 individuals is
affected by a monogenic neurological disorder (3). Despite the advances in disease gene discovery,
novel treatment for these disorders has lagged, partly because of the difficulties of penetrating the
blood–brain barrier as well as delivering to anatomically complex tissues. Remarkably, in the last
5 years, three novel and distinct gene-targeting treatments have shown clinical efficacy in infants
and children with the inherited motor neuron disease spinal muscular atrophy (SMA).The success
and continued challenges facing these treatments provide insights relevant to the development of
similar therapeutics for multiple neurogenetic disorders.

SPINAL MUSCULAR ATROPHY: AN UNUSUAL OPPORTUNITY
FOR GENE-TARGETING THERAPEUTICS

Affecting approximately 1 in 10,000 individuals, SMA is the most common inherited cause of
infant and early childhood death (4). SMA is caused by recessive, loss-of-function mutations of
SMN1 (the survival motor neuron 1 gene) (5), but disease severity correlates inversely with the
number of copies of the paralogous gene SMN2 (6, 7).Loss of αmotor neurons andmuscle atrophy
cause severe muscle weakness, particularly of the proximal limb, truncal, and bulbar muscles (8).
Patients show a wide range of severity from infantile-onset (type I) disease (60% of cases), with-
out achievement of early motor milestones such as sitting, to adult-onset (type IV) disease which
is characterized by mild to moderate weakness of limb-girdle muscles (9). SMN1 and SMN2 are
constitutively transcribed, but a single base pair difference in SMN2 (C→T) in exon 7 alters its
precursor messenger RNA (pre-mRNA) processing such that exon 7 is most often excluded in
the mature mRNA (10–13). When translated, this shortened mRNA produces a truncated SMN
protein that is rapidly degraded. A small percentage (∼20%) of SMN2 transcripts retain exon 7
and produce a low amount of functional protein (9). In the absence of SMN1, this is sufficient to
rescue the embryonic lethality caused by complete loss of SMN, but it is insufficient to prevent
motor neuron degeneration. This unique genetic cascade has led to two distinct strategies to in-
crease SMN levels: (a) modification of SMN2 pre-mRNA splicing to facilitate exon 7 inclusion and
(b) SMN1 gene replacement (Figure 1).

GENE-TARGETING THERAPEUTICS FOR NEUROGENETIC DISEASES

Gene-directed therapeutics include those targeting DNA by gene-replacement or gene-editing
strategies and those targeting RNA using antisense oligonucleotides (ASOs), short interfering
RNAs, or micro RNAs (miRNAs) (14). Here, we focus on those platforms that have shown re-
cent clinical success in SMA, but the reader is directed to other reviews for more information
about gene-editing strategies including clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 systems (15) and short interfering RNA and miRNA therapeutics (14).
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Figure 1

SMA gene-targeting therapeutics. (a) Routes of administration: intrathecal, intravenous, and oral. (b) Cell targets: α motor neurons (cell
bodies in ventral horn of spinal cord) and, in some cases, myofibers and other cell types. (c) Therapeutic mechanisms of scAAV9-SMN
cDNA (onasemnogene abeparvovec), the splice-switching ASO nusinersen, and the splice-switching small molecules risdiplam and
branaplam. Panel c adapted from Reference 19, figure 1. Abbreviations: ASO, antisense oligonucleotide; BBB, blood–brain barrier; CSF,
cerebrospinal fluid; FL-SMN, full-length survival motor neuron protein; SMA, spinal muscular atrophy; SMN, survival motor neuron
(gene or protein).

Antisense Oligonucleotides

ASOs are synthetic single-stranded nucleic acids that bind to specific pre-mRNA or mRNA
sequences by Watson-Crick base pairing and affect downstream protein synthesis either by
selecting mRNAs for RNase-H-mediated degradation or by modulating pre-mRNA stability or
splicing by functioning as a steric block (16). Chemical modifications to ASOs enhance target
specificity, resistance to nucleases, plasma half-lives, and tissue uptake (17). Cells take up ASOs
by endocytosis after receptor binding and clear them using endo- and exonuclease pathways
(18). The mechanisms that mediate intracellular distribution of ASOs to determine “productive
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uptake” are poorly understood. In addition, cell type–specific variability in ASO uptake can occur
due to differences in receptor binding ability and the physiological state of the cell (18). ASOs
are currently being developed for a large number of neurogenetic disorders (17, 19). Because
they do not cross the blood–brain barrier, they must be delivered by intrathecal (IT) or intrac-
erebroventricular routes when targeting the central nervous system (CNS) (20). In 2016, the
SMN2 splice-switching ASO nusinersen was approved by the US Food and Drug Administration
for all patients with SMA. Nusinersen, a 2′-O-methyoxyethyl-modified ASO, is delivered to the
cerebrospinal fluid (CSF) by lumbar IT injection four times during the first 2 months (loading
phase) and every 4 months thereafter. Following uptake in motor neurons localized in the ventral
horn of the spinal cord, nusinersen binds SMN2 pre-mRNAs at the intronic splicing silencer N1
(ISS-N1) motif, thereby sterically hindering splicing factors, promoting exon 7 inclusion, and
increasing expression of full-length SMN protein (21, 22).

Other ASOs now commercially available include inotersen for familial amyloid neuropathy,
an autosomal dominant disease caused by TTR (transthyretin gene) mutations and characterized
by progressive neuropathy and cardiomyopathy due to amyloid deposition. Systemically delivered
inotersen targets hepatocytes and reduces transthyretin synthesis. It was FDA approved in 2018
coincident with approval of patisiran, a systemically delivered RNAi therapeutic also targeting
TTR (23, 24). Eteplirsen is an exon-skipping ASO that was FDA approved for the treatment of
patients with DMD in 2016. Administered by intramuscular injection, it promotes skipping of
a single exon 51 of Dystrophin mRNA, thereby restoring the reading frame and converting the
DMD phenotype to a milder Becker muscular dystrophy phenotype (25). While this is effective
for ∼14% of DMD cases, ASOs that support multi-exon skipping in DMD can target up to 70%
of cases (26). Two more ASOs, golodirsen and viltolarsen, that both target exon 53 are also FDA
approved (approval for viltolarsen is conditional pending results of an ongoing phase III clinical
trial). The ASO tominersen is currently in phase III clinical trials in patients with Huntington’s
disease. This drug is delivered by lumbar IT injection and targets the HTT mRNA to reduce
mutant HTT expression (27). Tofersen, now in clinical trials, is delivered by lumbar IT injection
in familial amyotrophic lateral sclerosis (ALS) patients with SOD1 mutations. To date, the drug
has been well tolerated and reduces SOD1 levels in the CSF (28).

Gene Therapy

Although several viral vectors, including retroviruses, lentiviruses, adenoviruses, and her-
pesviruses, have been considered for neurological disease indications, there has been a recent
coalescence around adeno-associated viruses (AAVs) because they are nonpathogenic and can
transduce neurons (29, 30). AAVs establish themselves as persistently expressing episomes with
little incorporation into the host genome and can theoretically persist indefinitely in nondividing
cells such as neurons. They have demonstrated safety and long-lasting expression in clinical
studies for many neurological diseases (31). Different AAV serotypes vary in their efficacy in
transducing specific neuronal populations, CNS distribution, and ability to transduce the CNS by
the intravenous route (31). Despite AAVs’ limited payload capacity (∼4.7 kB), replacement of the
native AAV genome with desired cDNA driven by a promoter is tractable for many diseases. To
enable rapid transgene expression by circumventing the requirement of second-strand synthesis,
double-stranded, self-complementary recombinant AAVs (scAAVs) have been designed (32).
Voretigene neparvovec, administered by subretinal injection for patients with retinal dystrophy
caused by biallelic mutations of RPE65 (33), was the first AAV-based gene therapy approved by
the FDA, in 2017. The breakthrough that led to the use of AAV gene transfer in SMA was the
discovery of successful transduction of spinal motor neurons by AAV9 delivered intravenously
in preclinical models (34–36). Subsequent clinical trials using scAAV9-delivered SMN cDNA
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driven by the chicken β-actin promoter resulted in the 2019 FDA approval of onasemnogene
abeparvovec delivered by a single intravenous injection for SMA infants <2 years of age. As
systemic delivery is not feasible in older individuals, clinical trials of onasemnogene abeparvovec
delivered by lumbar IT injection are ongoing in older children with SMA.

Currently, in addition to ongoing trials in SMA,multiple clinical trials are ongoing or planned
in loss-of-function neurogenetic disorders (31). For example, scAAV9/JeT-GAN delivered by IT
injection to replace gigaxonin is in a phase I clinical trial for patients with the pediatric, autosomal
recessive neurodegenerative disorder giant axonal neuropathy (NCT02362438). AAV1-mediated
gene replacement of α-glucosidase (GAA) delivered by intramuscular injection is in a phase I/II
clinical trial in Pompe disease (NCT02240407). In disorders characterized by a toxic gain of
function, AAVs have been used as in vivo delivery tools for mRNA targeting therapeutics such as
miRNAs and short hairpin RNAs. For example, in Huntington’s disease, the gene therapy
candidate AMT-130, which uses AAV5 to deliver a miRNA to inhibit toxic mHtt protein ex-
pression, was recently granted Fast Track designation by the FDA. Gene therapy approaches are
currently in clinical trials for 15 rare neurological disorders with a monogenetic etiology (see
ClinicalTrials.gov).

Small Molecules

Because of their low molecular weight, small molecules have obvious advantages as pharmaceuti-
cals due to their potential wide tissue biodistribution and ease of administration (often oral).Most
available small-molecule therapeutics target proteins, and developing small molecules that target
RNA or DNA with sufficient specificity has been a major challenge (37). Identification of and
focus on RNA structural motifs that are sufficiently sophisticated to allow for high affinity and
specificity during binding are key to successfully target RNA using small molecules (37). Chem-
ical screening and optimization efforts led to the identification of orally available SMN-C class
small molecules (close analogs of risdiplam) and branaplam (LMI070) that promoted improved
clinical outcomes in preclinical models of SMA (38, 39). Mechanistic studies of these molecules
showed that they bind the RNA duplex formed between U1 RNA and the SMN2 pre-mRNA and
are possibly stabilized further by components of U1 small nuclear ribonucleoprotein particle pro-
teins (40, 41). The FDA approved risdiplam in 2020, and clinical trials for branaplam are ongoing.
Risdiplam is the first and only at-home, orally administered treatment for SMA. It is a liquid so-
lution administered orally. Daily dosing regimen for infants, children, and adults is dependent on
age and weight (2 months to 2 years: 0.2 mg/kg weight;≥2 years to<20 years: 0.25 mg/kg weight;
≥20 years: 5 mg) (42).

Attempts to develop gene-targeting small-molecule therapeutics are ongoing in other neuro-
genetic and muscle diseases. Ataluren, a small-molecule drug in clinical trials for DMD, promotes
ribosomal read-through of premature stop codon mutations in Dystrophin mRNA (43). In my-
otonic dystrophy, a designer small molecule, Cugamycin, was shown to selectively cleave disease-
causing CUG repeat expansions in vivo (44). Other neurogenetic diseases for which promising
small-molecule therapeutic candidates have been found include familial dysautonomia (45),Hunt-
ington’s disease (46), and ALS (47).

KEY CLINICAL TRIALS IN SPINAL MUSCULAR ATROPHY AND
IMPLICATIONS FOR OTHER NEUROGENETIC DISEASES

Central to successful development of nusinersen, onasemnogene abeparvovec, and risdiplam have
been well-designed and -executed clinical trials. The principal approval-enabling trials for each
of these treatments are summarized in Table 1 [long-term efficacy and safety trials are not
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included but can be found in other reviews (9)]. Because of the variable clinical severity of SMA,
trials were designed to test therapeutic efficacy in separate but parallel studies of infants and
older children using age-appropriate outcome measures, including well-validated motor func-
tional scales (48–53). In addition, because preclinical data in SMA mouse models had repeatedly
demonstrated that earlier intervention was significantly more efficacious, each drug development
program included a study to test drug efficacy in at least a small number of very young, presymp-
tomatic patients. Because older patients progress very slowly, they were not included in these con-
trolled trials, although observational studies of nusinersen efficacy in adults are now being reported
(54).

Interestingly, despite the distinctions in type, administration route, and biodistribution of the
three therapeutics, the trial results across the drugs are more similar than discrepant. In each case,
presymptomatic or very early initiation of the drug resulted in marked reductions in mortality as
well as near normal achievement of early motor milestones, including sitting and walking in some
cases (55–58). In contrast, postsymptomatic initiation of treatment in infants or children resulted
in more modest improvements in motor function (58–60). Long-term outcome data remain fairly
limited, but at least for nusinersen-treated patients, slow improvement in motor function may
continue for many years (61). While the success of these clinical trials remains a breakthrough,
perhaps their most significant lesson is that SMA is far from being deemed cured. Further, the
observed variability in clinical outcomes is poorly understood. In the following section, we delin-
eate some of the variables that may be limiting efficacy and their relevance to other neurogenetic
disease drug development programs.

CHALLENGES OF GENE-TARGETING THERAPIES

Drug Biodistribution and Toxicities

Optimization of the pharmacokinetics (PK) of gene-targeting therapeutics can be particularly
challenging for neurological diseases because neural tissues are not readily sampled in living pa-
tients. Although lumbar IT delivery is being used for many ASOs and gene therapies, including
nusinersen and onasemnogene abeparvovec, PK in the IT compartment is poorly understood.
Drug biodistribution along the rostro-caudal axis of the spinal cord and in the brain likely de-
pends on several parameters, including drug injection site, injection rate, dose amount and vol-
ume, protein binding properties, tissue affinity, and CSF clearance dynamics (62). CSF measures
of HTT and SOD1 levels are being used as surrogate markers of CNS drug delivery in Hunting-
ton’s disease and ALS, respectively (63, 64), but unfortunately SMN protein quantification in CSF
has not proven feasible. Assessments of human tissues at the time of expedited autopsy is critical
to fully understand drug PK in patients. In nine SMA patients analyzed to date, nusinersen con-
centrations and full-length SMN2 mRNA induction were highest in lumbar and thoracic spinal
cord regions and much lower in brainstem and brain regions (59, 65). This caudal-to-rostral gra-
dient raises concerns about insufficient drug delivery to cervical and brainstem motor neurons in
SMA patients. Currently, all patients regardless of age or weight receive 12 mg of nusinersen in a
volume of 5 ml. The DEVOTE clinical trial is evaluating higher doses of nusinersen (two induc-
tion doses of 50 mg followed by maintenance doses of 28 mg) in SMA patients (NCT04089566).
Furthermore, ongoing studies in ALS and Huntington’s disease are using higher doses of ASO
(100 or 120 mg, respectively) in order to target brain neurons, including those in deep brain nu-
clei (NCT02623699 and NCT02519036). These and other studies will establish the tolerability
of higher-dose ASOs delivered intrathecally. Reported neuroinflammatory events following IT
delivery of AAVs also require further study (66).
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Another consideration to improve rostral delivery is positioning during injection.Rats inverted
in the Trendelenburg position or continuously rotated while receiving AAV9 IT infusions showed
improved neuronal transduction, greater animal-to-animal consistency of gene expression, and
improved delivery to cortical regions (67). Other delivery routes, such as cervical (68) or intra-
parenchymal injections, despite being more invasive, may be suitable in some cases. Advanced
multimodal imaging has enabled the tracking of ASO movement in rats to define ASO regional
distribution, regional uptake, and CNS penetration (62). Such techniques are also being applied
in human clinical trials to evaluate biodistribution of ASO tofersen targeting SOD1 when coad-
ministered with radiolabeled 99mTc-MAG3-BIIB067 (NCT03764488).

Variations in therapeutic uptake by individual cell types involved in disease pathogenesis, such
as neurons and glia, may also determine drug efficacy. Moreover, it is not known if degenerating
neurons’ ability to take up gene-targeting therapeutics is comparable to that of healthy neurons.
In SMA, although motor neurons are particularly affected by the loss of SMN, other cell types in-
cluding myofibers have also been shown to contribute to disease pathogenesis (69, 70), and clinical
outcomes may be enhanced if therapeutics can be targeted to muscle in addition to neurons.

Systemically delivered gene-targeting therapeutics have the potential advantage of more
widespread tissue targeting, including in the CNS. Analysis of tissues from two infants who died
following intravenous treatment with onasemnogene abeparvovec demonstrated increased SMN
protein expression in spinal motor neurons, in neuronal and glial cells of the brain, and in the
heart, liver, skeletal muscles, and other tissues (71). This delivery route requires high titers of
virus and thus is associated with very high initial exposure in particular tissues such as liver and
dorsal root ganglion, which may cause immediate inflammatory reactions in some cases (72). In
the long term, low rates of viral host DNA integration could trigger oncogenesis (73). Unlike IT
delivery, systemic delivery of ASOs can be associated with thrombocytopenia and renal insuffi-
ciency (74). Based on preclinical data, risdiplam is freely distributed from the blood into the CNS
and other tissues owing to its high passive permeability and resistance to themulti-drug-resistance
gene (MDR1) (75). Although studies indicate robust drug levels and SMN induction in blood, fur-
ther studies are needed to verify efficiency of motor neuron targeting in SMA patients. In animal
studies, administration of risdiplam during pregnancy or throughout pregnancy and lactation re-
sulted in adverse effects on development. Risdiplam is not recommended for patients with hepatic
impairment and may also cause male infertility. Common adverse reactions occurring in ≥10% of
infants receiving risdiplam were upper respiratory tract infections (60%), fever (40%), pneumonia
(26%), rash (26%), diarrhea (15%), and vomiting (15%), which mirrored adverse effects observed
in the later-onset SMA cohort (42). Potential retinal toxicity was closely monitored during clinical
trials of risdiplam, as an earlier trial of its predecessor small molecule RG7800 was halted due to
retinal toxicity observed in preclinical models.

Molecular Target Engagement

Understanding the required timing of target engagement and expression levels required for effi-
cacy while avoiding toxicity (i.e., defining the therapeutic window) is critical to the clinical success
of gene-targeting therapeutics. In the case of SMA, the markedly increased benefit obtained with
treatment soon after birth may relate in part to endogenous changes of SMN expression during
the course of development. SMN protein levels are particularly high during fetal development
and fall perinatally in human spinal cord, suggesting a particular requirement for SMN during
early developmental periods (65). Importantly, in the case of SMA, therapeutic benefit appears to
arise with various induction levels of the SMN protein, with little evidence to date that supra-
physiological levels of SMN expression are toxic. As both nusinersen and risdiplam act via splice
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modulation, the level of SMN induction is limited by the levels of existing SMN2 pre-mRNA;
however, in the case of onasemnogene abeparvovec, virally delivered SMN cDNA is driven by the
chicken β-actin promoter and thus is not constrained in this way (9). In some cases, potential toxic
effects can result from gene expression in nontarget tissues or due to overexpression of the tar-
get gene (31, 76). Similarly, excessive therapeutic knockdown may be deleterious, as might occur
in the case of excessive knockdown of SOD1 or HTT (77, 78). The durability of gene-targeting
strategies also requires further study, as cellular compensations such as host DNA epigenetic alter-
ations or episomal silencing are possible. Preclinical data for risdiplam showed off-target effects,
including alternative splicing of genes such as FOXM1 andMADD (42), and similar effects could
potentially be a drawback of small-molecule treatments in general.

Evolution of Disease Pathogenesis and Novel Biomarkers

The timing of irreversible neurodegenerative events relative to treatment initiation has been one
of the most difficult challenges in the field of neurodegenerative disorders. In the case of SMA,
preclinical studies suggested that disease pathology may start at fetal stages, and this prompted
clinical trials to deliver therapeutics as soon after birth as possible. Recent characterizations of
type I SMA human tissues integrated with detailed SMA mouse model studies reaffirm that ab-
normal development of motor neuron axons begins in utero and is followed by fulminant degen-
eration of immature motor units neonatally (79). These data provide a pathological understand-
ing of the temporal window relevant to more efficacious treatment in patients and emphasizes
the importance of very early treatment. To achieve this goal, newborn genetic screening is be-
ing implemented in various countries. In 2018, the Advisory Committee on Heritable Disorders
in Newborns and Children recommended that SMA be added to the Recommended Uniform
Screening Panel (RUSP).Minnesota was the first US state to begin screening (80), and as of April
2020, 22 states are screening for SMA in newborns.

As gene-targeting therapeutics continue to advance, the need for novel pharmacodynamic
biomarkers to monitor disease progression and therapeutic efficacy has become increasingly ur-
gent. Blood and/or CSF neurofilament protein levels may be useful biochemical indicators of dis-
ease severity and progression (81, 82). NF-H, NF-M, and NF-L (neurofilament-heavy, -medium,
and -light) are cytoskeletal proteins expressed specifically in neurons and are released during de-
generation (83).NF-L has emerged as a prognostic blood biomarker in predicting disease severity
and progression in various neurological disorders, including Parkinson’s disease, ALS, and mul-
tiple sclerosis (84–87). In the ENDEAR nusinersen trial, phosphorylated NF-H levels were ∼10
times higher in children with SMA than in age-matched controls (81) and decreased dramatically
in the nusinersen-treated group (81). SMN protein levels in blood could potentially serve as a
biomarker for SMN induction in neuronal tissues following risdiplam administration (88), but
it is unclear if SMN levels in blood correlate with clinical outcomes. In addition to circulating
biomarkers, novel imaging and electrophysiological biomarkers are being developed for various
neurological diseases (89, 90).

CONCLUSIONS

Three new gene targeting treatments, each with distinct routes of administration, are now FDA
approved for the treatment of SMA patients. Despite this remarkable progress, variability in clin-
ical outcomes highlights the need for treatment optimization. Continued basic and translational
research efforts are needed to define factors that limit cell and tissue drug biodistribution and tar-
get engagement, and to characterize long-term durability and potential toxicities. Lessons learned
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from this work in SMA will be invaluable in advancing efficacious gene-targeting therapeutics for
other neurogenetic disorders. The high price tags of SMA therapeutics have received extensive
press coverage. Onasemnogene abeparvovec costs $2.1 million for a single dose; nusinersen costs
$125,000 per dose, and over the course of multiple doses, its treatment cost surpasses $1 million;
risdiplam is set to be price-capped at up to $340,000 per year (91, 92). The costs of such gene-
targeting therapeutics are not sustainable, particularly as the US FDA predicts it will approve 10
to 20 cell or gene therapy products per year by the year 2025. Efforts must be undertaken to ad-
dress these skyrocketing costs such that all patients can benefit from the promise of such precision
healthcare.
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